skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Jin J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 28, 2026
  2. Free, publicly-accessible full text available December 1, 2026
  3. Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes. 
    more » « less
    Free, publicly-accessible full text available May 24, 2026
  4. Free, publicly-accessible full text available November 1, 2025
  5. BackgroundHeart failure (HF) is a serious condition with increasing prevalence, high morbidity, and increased mortality. Obesity is an established risk factor for HF. Fluctuation in body mass index (BMI) has shown a higher risk of cardiovascular outcomes. We investigated the association between BMI variability and incident HF. Methods and ResultsIn the UK Biobank, we established a prospective cohort after excluding participants with prevalent HF or cancer at enrollment. A total of 99 368 White participants with ≥3 BMI measures during >2 years preceding enrollment were included, with a median follow‐up of 12.5 years. The within‐participant variability of BMI was evaluated using standardized SD and coefficient of variation. The association of BMI variability with incident HF was assessed using Fine and Gray's competing risk model, adjusting for confounding factors and participant‐specific rate of BMI change. Higher BMI variability measured in both SD and coefficient of variation was significantly associated with higher risk in HF incidence (SD: hazard ratio [HR], 1.05 [95% CI, 1.03–1.08],P<0.0001; coefficient of variation: HR, 1.07 [95% CI, 1.04–1.10],P<0.0001). ConclusionsLongitudinal health records capture BMI fluctuation, which independently predicts HF incidence. 
    more » « less
  6. Abstract Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using ‘off-the-shelf’ products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells intoAlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhancedAlloCAR-NKT cells with high yield and purity. We generatedAlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties ofAlloCAR-NKT cells support their potential for clinical translation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Both long- and short-term glycemic variability have been associated with incident diabetes complications. We evaluated their relative and potential additive effects on incident renal complications in the Action to Control Cardiovascular Risk in Diabetes trial. A marker of short-term glycemic variability, 1,5-anhydroglucitol (1,5-AG), was measured in 4,000 random 12-month postrandomization plasma samples (when hemoglobin A1c [HbA1c] was stable). Visit-to-visit fasting plasma glucose coefficient of variation (CV-FPG) was determined from 4 months postrandomization until the end point of microalbuminuria or macroalbuminuria. Using Cox proportional hazards models, high CV-FPG and low 1,5-AG were independently associated with microalbuminuria after adjusting for clinical risk factors. However, only the CV-FPG association remained after additional adjustment for average HbA1c. Only CV-FPG was a significant risk factor for macroalbuminuria. This post hoc analysis indicates that long-term rather than short-term glycemic variability better predicts the risk of renal disease in type 2 diabetes. Article HighlightsThe relative and potential additive effects of long- and short-term glycemic variability on the development of diabetic complications are unknown. We aimed to assess the individual and combined relationships of long-term visit-to-visit glycemic variability, measured as the coefficient of variation of fasting plasma glucose, and short-term glucose fluctuation, estimated by the biomarker 1,5-anhydroglucitol, with the development of proteinuria. Both estimates of glycemic variability were independently associated with microalbuminuria, but only long-term glycemic variability remained significant after adjusting for average hemoglobin A1c. Our findings suggest that longer-term visit-to-visit glucose variability improves renal disease prediction in type 2 diabetes. 
    more » « less
  8. ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability. 
    more » « less